MMRM vs. LOCF: a comprehensive comparison based on simulation study and 25 NDA datasets.

نویسندگان

  • Ohidul Siddiqui
  • H M James Hung
  • Robert O'Neill
چکیده

In recent years, the use of the last observation carried forward (LOCF) approach in imputing missing data in clinical trials has been greatly criticized, and several likelihood-based modeling approaches are proposed to analyze such incomplete data. One of the proposed likelihood-based methods is the Mixed-Effect Model Repeated Measure (MMRM) model. To compare the performance of LOCF and MMRM approaches in analyzing incomplete data, two extensive simulation studies are conducted, and the empirical bias and Type I error rates associated with estimators and tests of treatment effects under three missing data paradigms are evaluated. The simulation studies demonstrate that LOCF analysis can lead to substantial biases in estimators of treatment effects and can greatly inflate Type I error rates of the statistical tests, whereas MMRM analysis on the available data leads to estimators with comparatively small bias, and controls Type I error rates at a nominal level in the presence of missing completely at random (MCAR) or missing at random (MAR) and some possibility of missing not at random (MNAR) data. In a sensitivity analysis of 48 clinical trial datasets obtained from 25 New Drug Applications (NDA) submissions of neurological and psychiatric drug products, MMRM analysis appears to be a superior approach in controlling Type I error rates and minimizing biases, as compared to LOCF ANCOVA analysis. In the exploratory analyses of the datasets, no clear evidence of the presence of MNAR missingness is found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining efficacy and completion rates with no data imputation: A composite approach with greater sensitivity for the statistical evaluation of active comparisons in antipsychotic trials

Outcomes in RCT's of antipsychotic medications are often examined using last observation carried forward (LOCF) and mixed effect models (MMRM), these ignore meaning of non-completion and thus rely on questionable assumptions. We tested an approach that combines into a single statistic, the drug effect in those who complete trial and proportion of patients in each treatment group who complete tr...

متن کامل

Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM approaches.

This study compares two methods for handling missing data in longitudinal trials: one using the last-observation-carried-forward (LOCF) method and one based on a multivariate or mixed model for repeated measurements (MMRM). Using data sets simulated to match six actual trials, I imposed several drop-out mechanisms, and compared the methods in terms of bias in the treatment difference and power ...

متن کامل

The impact of missing data and how it is handled on the rate of false-positive results in drug development.

In drug development, a common choice for the primary analysis is to assess mean changes via analysis of (co)variance with missing data imputed by carrying the last or baseline observations forward (LOCF, BOCF). These approaches assume that data are missing completely at random (MCAR). Multiple imputation (MI) and likelihood-based repeated measures (MMRM) are less restrictive as they assume data...

متن کامل

The impact of analytic method on interpretation of outcomes in longitudinal clinical trials

AIMS Various analytical strategies for addressing missing data in clinical trials are utilised in reporting study results. The most commonly used analytical methods include the last observation carried forward (LOCF), observed case (OC) and the mixed model for repeated measures (MMRM). Each method requires certain assumptions regarding the characteristics of the missing data. If the assumptions...

متن کامل

The selective GABA reuptake inhibitor tiagabine for the treatment of generalized anxiety disorder: results of a placebo-controlled study.

OBJECTIVE To evaluate the efficacy and tolerability of tiagabine, a selective gamma-aminobutyric acid (GABA) reuptake inhibitor, in adults with generalized anxiety disorder (GAD). METHOD This 8-week, randomized, double-blind, multicenter, placebo-controlled study enrolled patients with GAD (DSM-IV). Tiagabine was initiated at 4 mg/day and then flexibly dosed twice a day to a maximum dose of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biopharmaceutical statistics

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2009